Dose-Dependent Effect on Plant Growth of Exposure to Metal-Organic Framework MIL-101(Cr).
Yacong LiuYue LinWeichao WangKe MinWeibo LingWende MaWeican ZhangXingwang HouLinfeng WeiQian LiuGui-Bin JiangPublished in: Environmental science & technology (2024)
With the increasing use of metal-organic frameworks (MOFs), they will inevitably enter the environment intentionally or unintentionally. However, the effects of MOFs on plant growth are poorly understood. Here, we investigated the effects of exposure of the rhizosphere to MOFs on plant growth. MIL-101(Cr) was selected as a research model due to its commercial availability and wide use. Soybean plants at the two-leaf stage were subjected to various durations (1-7 days) and concentrations (0-1000 mg/L) of exposure in hydroculture with a control group treated with ultrapure water. We found that MIL-101(Cr) had a positive effect on soybean growth at a lower dose (i.e., 200 mg/L); however, at higher doses (i.e., 500 and 1000 mg/L), it exhibited significant toxicity to plant growth, which is evidenced by leaf damage. To investigate the mechanism of this effect, we used Cr as an indicator to quantify, track, and image MIL-101(Cr) in the plant with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Results indicated that MIL-101(Cr) primarily accumulated in the cortex of roots (up to 40 times higher than that in stems), with limited translocation to stems and negligible presence in leaves and cotyledons. In addition, metabolomic analysis of soybeans indicated that low-dose MIL-101(Cr) could increase the sucrose content of soybean roots to promote plant growth, while a high dose could induce lipid oxidation in roots. This study provides valuable insights into the ecological toxicology of MOFs and underscores the importance of assessing their environmental impact for sustainable agricultural practices.