Login / Signup

Few-Layer MoS2 Photodetector Arrays for Ultrasensitive On-Chip Enzymatic Colorimetric Analysis.

Younggeun ParkByunghoon RyuSeung Jun KiBrendan McCrackenAmanda PenningtonKevin R WardXiaogan LiangKatsuo Kurabayashi
Published in: ACS nano (2021)
Enzymatic colorimetric analysis of metabolites provides signatures of energy conversion and biosynthesis associated with disease onsets and progressions. Miniaturized photodetectors based on emerging two-dimensional transition metal dichalcogenides (TMDCs) promise to advance point-of-care diagnosis employing highly sensitive enzymatic colorimetric detection. Reducing diagnosis costs requires a batched multisample assay. The construction of few-layer TMDC photodetector arrays with consistent performance is imperative to realize optical signal detection for a miniature batched multisample enzymatic colorimetric assay. However, few studies have promoted an optical reader with TMDC photodetector arrays for on-chip operation. Here, we constructed 4 × 4 pixel arrays of miniaturized molybdenum disulfide (MoS2) photodetectors and integrated them with microfluidic enzyme reaction chambers to create an optoelectronic biosensor chip device. The fabricated device allowed us to achieve arrayed on-chip enzymatic colorimetric detection of d-lactate, a blood biomarker signifying the bacterial translocation from the intestine, with a limit of detection that is 1000-fold smaller than the clinical baseline, a 10 min assay time, high selectivity, and reasonably small variability across the entire arrays. The enzyme (Ez)/MoS2 optoelectronic biosensor unit consistently detected d-lactate in clinically important biofluids, such as saliva, urine, plasma, and serum of swine and humans with a wide detection range (10-3-103 μg/mL). Furthermore, the biosensor enabled us to show that high serum d-lactate levels are associated with the symptoms of systemic infection and inflammation. The lensless, optical waveguide-free device architecture should readily facilitate development of a monolithically integrated hand-held module for timely, cost-effective diagnosis of metabolic disorders in near-patient settings.
Keyphrases