Login / Signup

Enhanced Oxidation Resistance of Ultrafine-Grain Microstructure AlCoCrFeNi High Entropy Alloy.

Mayank GargHarpreet Singh GrewalRam K SharmaHarpreet Singh Arora
Published in: ACS omega (2022)
This work investigates the effect of ultrafine-grain microstructure on the oxidation behavior of AlCoCrFeNi high entropy alloy (HEA). The ultrafine-grain microstructure is obtained using stationary friction processing performed at two different rotational speeds, 400 and 1800 rpm, for 5 min duration. Processed samples demonstrate high depth of refinement (DOR) and ultrafine grain size (0.43-1 μm) at high rotational speeds along with significant phase transformations from BCC/B2 to FCC microstructure. Further, surface free energy of the ultrafine-grain microstructure is enhanced up to 35%. Oxidation kinetics of the ultrafine-grained sample is decelerated up to 12-48% in a temperature range of 850-1050 °C for a duration of 100 h. Chromia and alumina were the predominant oxides formed in almost all the samples oxidized at elevated temperature. In addition, spinel Co(Cr,Fe) 2 O 4 /Fe(Co,Cr) 2 O 4 formation is also detected in the unprocessed oxidized samples. Processed samples rich in grain boundaries (GBs) promote internal oxidation to form Al-rich inner oxides. The enhanced oxidation resistance of the processed samples is attributed to the microstructural refinement and homogenization resulting in the formation of protective chromia followed by Al-rich inner oxides.
Keyphrases
  • white matter
  • particulate matter
  • hydrogen peroxide
  • multiple sclerosis
  • air pollution
  • electron transfer
  • visible light
  • nitric oxide
  • mass spectrometry
  • liquid chromatography