Login / Signup

Ultrafast Electron Trapping and Defect-Mediated Recombination in NiO Probed by Femtosecond Extreme Ultraviolet Reflection-Absorption Spectroscopy.

Somnath BiswasJakub HusekStephen LondoL Robert Baker
Published in: The journal of physical chemistry letters (2018)
Understanding the chemical nature of defect sites as well as the mechanism of defect-mediated recombination is critical for the rational design of energy conversion materials with improved efficiency. Using femtosecond extreme ultraviolet (XUV) spectroscopy in conjunction with X-ray photoelectron spectroscopy (XPS), we present results on the ultrafast electron dynamics in NiO prepared with varying concentrations of defect states. We find that oxygen vacancy defects do not serve as the primary recombination center, but rather the recombination rate scales linearly with the density of Ni metal defects. This suggests that grain boundaries between Ni metal and NiO are responsible for fast carrier recombination in partially reduced NiO. Our kinetic model shows that the photoexcited electrons self-trap via small polaron formation on the subpicosecond time scale. Additionally, we estimate an absolute measurement of small polaron formation rates, direct versus defect-mediated recombination rates, and the small polaron diffusion coefficient in NiO. This study provides important parameters for engineering NiO based materials for solar energy harvesting applications.
Keyphrases
  • dna repair
  • dna damage
  • high resolution
  • single molecule
  • magnetic resonance
  • energy transfer
  • oxidative stress
  • solid state
  • electron transfer
  • mass spectrometry
  • molecular dynamics simulations
  • dual energy