Platinum-Based Twin Drug Modulates Tumor-Infiltrating Immune Cells to Improve Immune Checkpoint Blockade Therapy.
Yuhao HaoRui LiYuanzeng MinPublished in: Journal of medicinal chemistry (2023)
Chemoimmunotherapy is an area of active research and development with a growing body of evidence supporting its potential benefits for the treatment of cancer. However, chemotherapy components of chemoimmunotherapy have several limitations, including systemic toxicity and poor performance in reversing the immunosuppressive tumor microenvironment. Here, we designed a twin drug, MROP, complexed with all-trans retinoic acid and oxaliplatin, and showed that the twin drug significantly enhanced the synergetic therapeutic efficacy with anti-PD-1 in a colorectal cancer mouse model. We demonstrated by mechanistic analyses of tumor tissue that the combination of anti-PD-1 and MROP induced immunogenic cell death and regulated tumor-infiltrating immune cells, including the polarization of tumor-associated macrophages toward type 1, a reduction in myeloid-derived suppressor cells, and a significant increase in the proportion of T cells, particularly CD8 + T cells. This paper provides a promising strategy for cancer treatment and new insight into the mechanism of chemoimmunotherapy.