Changes in the Structural Composition and Moisture-Adsorption Properties of Mechanically Rolled Bamboo Fibers.
Wenjuan ZhaoJian ZhangWenfu ZhangJin WangGe WangPublished in: Materials (Basel, Switzerland) (2022)
The chemical content, mechanical capability, and dimensional stability of bamboo fibers (BFs) are all directly related to the hygroscopic behavior, which is crucial for industrial applications. To support the utilization of BFs, the structural and chemical composition of BFs with different opening times after mechanical rolling were investigated in this study, and the Guggenheim-Anderson-de Boer (GAB) model was selected to predict their moisture-adsorption properties. The results showed that the length and diameter of the fibers gradually decreased with the increase in the number of openings, and the fibers gradually separated from bundles into single fibers. It was also observed that the treated BFs exhibited different equilibrium moisture contents (EMCs). BFs with a smaller number of openings had a higher hemicellulose content and more exposed parenchyma cells on the fibers, which increased the number of water adsorption sites. As the number of openings increased, the parenchyma cells on the fibers decreased, and the lignin content increased, which reduced the number of fiber moisture-adsorption sites and decreased the EMC of the fibers.