Login / Signup

Biocompatible curcumin coupled nanofibrous membrane for pathogens sterilization and isolation.

Yuanyuan RaoShasha FengZe-Xian LowJunwei WuShengui JuZhaoxiang ZhongWeihong Xing
Published in: Journal of membrane science (2022)
Airborne transmission of pathogens is the most probable cause for the spread of respiratory diseases, which can be intercepted by personal protective equipment such as masks. In this study, an efficient antiviral personal protective filter was fabricated by coupling the biocompatible curcumin (CCM) with nanofibrous polytetrafluoroethylene (PTFE) membrane. The CCM extracted from plants was first dissolved in acidified ethanol at a certain pH and temperature to optimize its loading concentration, antiviral activation, and binding forces on the polyethylene terephthalate (PET) support to form a pre-filtration layer at the front section of the filter. Ultrathin PTFE membrane was then fabricated on the antibacterial-antiviral PET support (A-A PET) by controllable heating lamination. This functional layer of the filter exhibits good gas permeance (3423.6 m 3 /(m 2 ·h·kPa)) and ultrafine particles rejection rate (>98.79%). Moreover, the obtained A-A filter exhibit a high antibacterial rate against a variety of bacteria ( E. coli, B. subtilis, A. niger, and Penicillium were 99.84%, 99.02%, 93.60%, 95.23%, respectively). Forthwith virucidal (SARS-CoV-2) efficiency of the A-A filter can reach 99.90% for 5 min. The filter shows good stability after 10 heating cycles, demonstrating its reusability.
Keyphrases
  • sars cov
  • computed tomography
  • pet ct
  • positron emission tomography
  • particulate matter
  • escherichia coli
  • room temperature
  • antimicrobial resistance
  • drug delivery
  • coronavirus disease
  • wound healing