Login / Signup

Tunable Redox Potential Photocatalyst: Aggregates of 2,3-Dicyanopyrazino Phenanthrene Derivatives for the Visible-Light-Induced α-Allylation of Amines.

Min HeXiaoqiang YuYi WangMing Bao
Published in: The Journal of organic chemistry (2021)
This work highlights the tunable redox potential of 6,11-dibromo-2,3-dicyanopyrazinophenanthrene (DCPP3) aggregates, which can be formed through physical π-π stacking interactions with other DCPP3 monomers. Electrochemical and scanning electron microscopy showed that the reduction potential of [DCPP3]n aggregates could be increased by decreasing their size. The size of [DCPP3]n aggregates could be regulated by controlling the concentration of DCPP3 in an organic solvent. As such, a fundamental understanding of this tunable redox potential is essential for developing new materials for photocatalytic applications. The [DCPP3]n aggregates as a visible-light photocatalyst in combination with Pd catalysts in the visible-light-induced α-allylation of amines were used. This [DCPP3]n photocatalyst exhibits excellent photo- and electrochemical properties, including a remarkable visible-light absorption, long excited-state lifetime (16.6 μs), good triplet quantum yield (0.538), and high reduction potential (Ered([DCPP3]n/[DCPP3]n-) > -1.8 V vs SCE).
Keyphrases
  • visible light
  • electron microscopy
  • human health
  • mental health
  • ionic liquid
  • liquid chromatography