Galactose 1-phosphate accumulates to high levels in galactose-treated cells due to low GALT activity and absence of product inhibition of GALK.
Sher Li OhLi Yi ChengJie Fu J ZhouWolfgang HenkeThilo HagenPublished in: Journal of inherited metabolic disease (2019)
Classic Galactosaemia is a genetic disorder, characterised by galactose intolerance in newborns. It occurs due to recessive mutations in the galactose-1-phosphate uridylyltransferase (GALT) gene. One of the main alterations caused by GALT deficiency is the accumulation of galactose 1-phosphate (Gal-1P) in cells. Studies have suggested that Gal-1P exerts cellular toxicity, possibly by inhibiting cellular metabolism. However, the exact significance of Gal-1P in disease pathogenesis remains unclear. In this study, we tested the hypothesis that Gal-1P inhibits cellular glucose utilisation by competing with substrates in the glycolytic pathway. We also investigated the metabolism of both galactose and glucose in GALT-expressing HEK293T and 143B cells to identify critical reactions steps contributing to the metabolic toxicity of galactose. Notably, we found that galactose-treated HEK293T and 143B cells, which express endogenous GALT, accumulate markedly high intracellular Gal-1P concentrations. Despite very high intracellular Gal-1P concentrations, no inhibition of cellular glucose uptake and no significant changes in the intracellular concentrations of glycolytic metabolites were observed. This indicates that Gal-1P does not exert an inhibitory effect on glycolysis in cells and rules out one potential hypothesis for cellular Gal-1P toxicity. We also investigated the mechanism responsible for the observed Gal-1P accumulation. Our results suggest that Gal-1P accumulation is a result of both low GALT activity and the absence of product inhibition by Gal-1P on galactokinase (GALK1), the enzyme responsible for phosphorylating galactose to Gal-1P. These findings provide a better understanding of the disease mechanisms underlying Classic Galactoaemia.
Keyphrases
- induced apoptosis
- oxidative stress
- cell cycle arrest
- signaling pathway
- gene expression
- endoplasmic reticulum stress
- pregnant women
- dna methylation
- metabolic syndrome
- autism spectrum disorder
- climate change
- ms ms
- genome wide
- risk assessment
- type diabetes
- density functional theory
- cell death
- pi k akt
- single molecule
- insulin resistance
- skeletal muscle