Login / Signup

Three New Iridoid Derivatives Have Been Isolated from the Stems of Neonauclea reticulata (Havil.) Merr. with Cytotoxic Activity on Hepatocellular Carcinoma Cells.

Fang-Pin ChangWei ChaoSheng-Yang WangHui-Chi HuangPing-Jyun SungJih-Jung ChenMing-Jen ChengGuan-Jhong HuangYueh-Hsiung Kuo
Published in: Molecules (Basel, Switzerland) (2018)
Three new iridoids, namely neonanin A (1), neonanin B (2) and neoretinin A (3), as well as twelve known compounds, 6-hydroxy-7-methyl-1-oxo-4-carbomethoxyoctahydrocyclopenta[c]pyran (4), 4-epi-alyxialactone (5), loganetin (6), loganin (7), phenylcoumaran-α'-aldehyde (8), cleomiscosin A (9), ficusal (10), balanophonin (11), vanillic acid (12), p-coumaric acid (13), cis,trans-abscisic acid (14), and trans,trans-abscisic acid (15) were isolated from the stems of Neonauclea reticulata (Havil.) Merr. These new structures were determined by the detailed analysis of spectroscopic data and comparison with the data of known analogues. Compounds 1⁻13 were evaluated using an in-vitro MTT cytotoxic assay for hepatocellular carcinoma (HCC) cells, and the preliminary results showed that ficusal (10), balanophonin (11), and p-coumaric acid (13) exhibited moderate cytotoxic activity, with EC50 values of 85.36 ± 4.36, 92.63 ± 1.41, and 29.18 ± 3.48 µg/mL against Hep3B cells, respectively.
Keyphrases
  • electronic health record
  • molecular docking
  • induced apoptosis
  • high throughput
  • cell proliferation
  • big data
  • machine learning
  • cell death