Login / Signup

Self-Referenced Synthetic Urinary Biomarker for Quantitative Monitoring of Cancer Development.

Fengchao WangNing SunQiang LiJie YangXiaoqing YangDingbin Liu
Published in: Journal of the American Chemical Society (2022)
Urinary monitoring of diseases has gained considerable attention due to its simple and non-invasive sampling. However, urinalysis remains limited by the dearth of reliable urinary biomarkers and the intrinsically enormous heterogeneity of urine samples. Herein, we report, to our knowledge, the first renal-clearable Raman probe encoded by an internal standard (IS)-conjugated reporter that acts as a quantifiable urinary biomarker for reliable monitoring of cancer development, simultaneously eliminating the impact of sample heterogeneity. Upon delivery of the probes into tumor microenvironments, the endogenously overexpressed β-glucuronidase (GUSB) can cleave the target-responsive residues of the probes to produce IS-retained gold nanoclusters, which were excreted into host urine and analyzed by Au growth-based surface-enhanced Raman spectroscopy. As a result, the in vivo GUSB activity was transformed into in vitro quantitative urinary signals. Based on this IS-encoded synthetic biomarker, both the cancer progression and therapy efficacy were quantitatively monitored, potentiating clinical implications.
Keyphrases