Login / Signup

The HIF-1α and mTOR Pathways Amplify Heterotopic Ossification.

Haitao WangFrederick S KaplanRobert J Pignolo
Published in: Biomolecules (2024)
Fibrodysplasia ossificans progressiva (FOP; MIM# 135100) is an ultra-rare congenital disorder caused by gain-of-function point mutations in the Activin receptor A type I ( ACVR1 , also known as ALK2 ) gene. FOP is characterized by episodic heterotopic ossification (HO) in skeletal muscles, tendons, ligaments, or other soft tissues that progressively causes irreversible loss of mobility. FOP mutations cause mild ligand-independent constitutive activation as well as ligand-dependent bone morphogenetic protein (BMP) pathway hypersensitivity of mutant ACVR1. BMP signaling is also a key pathway for mediating acquired HO. However, HO is a highly complex biological process involving multiple interacting signaling pathways. Among them, the hypoxia-inducible factor (HIF) and mechanistic target of rapamycin (mTOR) pathways are intimately involved in both genetic and acquired HO formation. HIF-1α inhibition or mTOR inhibition reduces HO formation in mouse models of FOP or acquired HO in part by de-amplifying the BMP pathway signaling. Here, we review the recent progress on the mechanisms of the HIF-1α and mTOR pathways in the amplification of HO lesions and discuss the future directions and strategies to translate the targeting of HIF-1α and the mTOR pathways into clinical interventions for FOP and other forms of HO.
Keyphrases