Login / Signup

A 3D Elastoplastic Constitutive Model Considering Progressive Damage Behavior for Thermoplastic Composites of T700/PEEK.

Weigang FuHuanjie XiongZhe LiaoJunchi MaYaoming FuBin Wang
Published in: Materials (Basel, Switzerland) (2024)
Due to their excellent mechanical properties, the carbon fiber-reinforced polymer composites (CFRPs) of thermoplastic resins are widely used, and an accurate constitutive model plays a pivotal role in structural design and service safety. A two-parameter three-dimensional (3D) plastic potential was obtained by considering both the deviatoric deformation and the dilatation deformation associated with hydrostatic stress. The Langmuir function was first adopted to model the plastic hardening behavior of composites. The two-parameter 3D plastic potential, connected to the Langmuir function of plastic hardening, was thus proposed to model the constitutive behavior of the CFRPs of thermoplastic resins. Also, T700/PEEK specimens with different off-axis angles were subjected to tensile loading to obtain the corresponding fracture surface angles of specimens and the load-displacement curves. The two unknown plastic parameters in the proposed 3D plastic potential were obtained by using the quasi-Newton algorithm programmed in MATLAB, and the unknown hardening parameters in the Langmuir function were determined by fitting the effective stress-plastic strain curve in different off-axis angles. Meanwhile, the user material subroutine VUMAT, following the proposed constitutive model, was developed in terms of the maximum stress criterion for fiber failure and the LaRC05 criterion for matrix failure to simulate the 3D elastoplastic damage behavior of T700/PEEK. Finally, comparisons between the experimental tests and the numerical analysis were made, and a fairly good agreement was found, which validated the correctness of the proposed constitutive model in this work.
Keyphrases
  • machine learning
  • mental health
  • mass spectrometry
  • stress induced
  • gold nanoparticles