Login / Signup

Combining Stochastic Deformation/Relaxation and Intermolecular Contacts Analysis for Extracting Pharmacophores from Ligand-Receptor Complexes.

Ma'mon M HatmalMutasem Omar Taha
Published in: Journal of chemical information and modeling (2018)
We previously combined molecular dynamics (classical or simulated annealing) with ligand-receptor contacts analysis as a means to extract valid pharmacophore model(s) from single ligand-receptor complexes. However, molecular dynamics methods are computationally expensive and time-consuming. Here we describe a novel method for extracting valid pharmacophore model(s) from a single crystallographic structure within a reasonable time scale. The new method is based on ligand-receptor contacts analysis following energy relaxation of a predetermined set of randomly deformed complexes generated from the targeted crystallographic structure. Ligand-receptor contacts maintained across many deformed/relaxed structures are assumed to be critical and used to guide pharmacophore development. This methodology was implemented to develop valid pharmacophore models for PI3K-γ, RENIN, and JAK1. The resulting pharmacophore models were validated by receiver operating characteristic (ROC) analysis against inhibitors extracted from the CHEMBL database. Additionally, we implemented pharmacophores extracted from PI3K-γ to search for new inhibitors from the National Cancer Institute list of compounds. The process culminated in new PI3K-γ/mTOR inhibitory leads of low micromolar IC50s.
Keyphrases
  • molecular dynamics
  • density functional theory
  • molecular docking
  • emergency department
  • oxidative stress
  • binding protein