Nile-Red-Based Fluorescence Probe for Selective Detection of Biothiols, Computational Study, and Application in Cell Imaging.
Xiang RongZhong-Yong XuJin-Wu YanZhi-Zhong MengBin ZhuLei ZhangPublished in: Molecules (Basel, Switzerland) (2020)
A new colorimetric and fluorescence probe NRSH based on Nile-red chromophore for the detection of biothiols has been developed, exhibiting high selectivity towards biothiols over other interfering species. NRSH shows a blue shift in absorption peak upon reacting with biothiols, from 587 nm to 567 nm, which induces an obvious color change from blue to pink and exhibits a 35-fold fluorescence enhancement at 645 nm in red emission range. NRSH displays rapid (<1 min) response for H2S, which is faster than other biothiols (>5 min). The detection limits of probe NRSH towards biothiols are very low (22.05 nM for H2S, 34.04 nM for Cys, 107.28 nM for GSH and 113.65 nM for Hcy). Furthermore, NRSH is low cytotoxic and can be successfully applied as a bioimaging tool for real-time monitoring biothiols in HeLa cells. In addition, fluorescence mechanism of probe NRSH is further understood by theoretical calculations.
Keyphrases
- fluorescent probe
- living cells
- photodynamic therapy
- light emitting
- loop mediated isothermal amplification
- single molecule
- quantum dots
- energy transfer
- high resolution
- label free
- induced apoptosis
- real time pcr
- gold nanoparticles
- stem cells
- single cell
- molecular dynamics
- sensitive detection
- oxidative stress
- molecular dynamics simulations
- bone marrow
- fluorescence imaging
- cell therapy
- nitric oxide
- endoplasmic reticulum stress
- signaling pathway
- aqueous solution