Optical assay of trypsin using a one-dimensional plasmonic grating of gelatin-modified poly(methacrylic acid).
Ai-Wei LeeChih-Chia ChengChi-Jung ChangChien-Hsing LuJem-Kun ChenPublished in: Mikrochimica acta (2020)
The geometry of resonant absorbers (RA) is varied by tryptic digestion to design a probe platform. The process includes fabrication of a line array of poly(methacrylic acid) (PMAA) brush as an RA, tailed by the immobilization of gelatin. The gelatin-modified PMAA RA is a kind of one-dimensional plasmonic grating, possessing an optical feature with a characteristic absorption peak. The growth of gelatin on PMAA RA resulted in a blue shift of the absorption peak from 465 to 263 nm. Trypsin catalyzes the hydrolysis of peptide bonds, breaking down gelatin into smaller peptides causing the change in geometry of RA. The gelatin of RA was digested in a wide linear range of activity of trypsin from 34 to 1088 U mL-1 resulting in a red shift of the absorption peak of RA from 263 to 474 nm within 10 min. The limit of detection achieved is 11 U mL-1 with ca. 1.9% standard deviation and 101.4% recovery of spiked serum samples. The chemical selectivity of the trypsin assay is evidenced by motoring the changes in a shift of the absorption peak of gelatin-modified PMAA RA using chymotrypsin and horseradish peroxidase. Graphical abstract Schematic representation of synthesis route of 1D gelatin grating on silicon surface for trypsin probing.
Keyphrases