Sustained and Microenvironment-Accelerated Release of Minocycline from Alginate Injectable Hydrogel for Bacteria-Infected Wound Healing.
Chengjia XieQun ZhangZhao LiShaohua GeBaojin MaPublished in: Polymers (2022)
During wound healing, bacterial infection is one of the main limiting factors for the desired efficiency. Wound dressing-mediated antibiotics therapies could overcome this problem to a great extent due to sustained drug release and controllable dose. Here, we designed a kind of alginate injectable hydrogel loaded with minocycline (SA@MC) as a dressing for staphylococcus aureus-infected wound healing. SA@MC hydrogel possessed good injectability and can be injected by syringes. MC participated in the gel formation, causing the microstructure change based on the morphology characterization. The element mapping and FT-IR spectra further confirmed the successful loading of MC in SA hydrogel. Interestingly, MC was released more efficiently in a weakly alkaline condition (pH 7-8) than in a weakly acidic condition (pH 4-6) from SA@MC injectable hydrogel, which means that there is an accelerated release to respond to the weakly alkaline wound microenvironment. Meanwhile, SA@MC injectable hydrogel had high biocompatibility and excellent antibacterial activity due to the sustained release of MC. Further, in vivo experiment results demonstrated that SA@MC injectable hydrogel promoted staphylococcus aureus-infected wound healing efficiently. In summary, the injectable composite hydrogel can serve as an ideal dressing to prevent bacterial infection and promote wound healing.