Login / Signup

Quantum sensing of thermoelectric power in low-dimensional materials.

Mali ZhaoDohyun KimYoung Hee LeeHeejun YangSuyeon Cho
Published in: Advanced materials (Deerfield Beach, Fla.) (2021)
Thermoelectric power, has been extensively studied in low-dimensional materials where quantum confinement and spin textures can largely modulate thermopower generation. In addition to classical and macroscopic values, thermopower also varies locally over a wide range of length scales, and is fundamentally linked to electron wave functions and phonon propagation. Various experimental methods for the quantum sensing of localized thermopower have been suggested, particularly based on scanning probe microscopy. Here, we introduce critical advances in the quantum sensing of thermopower, from the atomic to the several-hundred-nanometer scales, including the unique role of low-dimensionality, defects, spins, and relativistic effects for optimized power generation. Investigating the microscopic nature of thermopower in quantum materials can provide insights useful for the design of advanced materials for future thermoelectric applications. Quantum sensing techniques for thermopower can pave the way to practical and novel energy devices for a sustainable society. This article is protected by copyright. All rights reserved.
Keyphrases
  • molecular dynamics
  • energy transfer
  • monte carlo
  • density functional theory
  • high resolution
  • single molecule
  • multidrug resistant
  • electron microscopy
  • optical coherence tomography
  • living cells