Propensity score methods for time-dependent cluster confounding.
Guy CafriPeter C AustinPublished in: Biometrical journal. Biometrische Zeitschrift (2020)
In observational studies, subjects are often nested within clusters. In medical studies, patients are often treated by doctors and therefore patients are regarded as nested or clustered within doctors. A concern that arises with clustered data is that cluster-level characteristics (e.g., characteristics of the doctor) are associated with both treatment selection and patient outcomes, resulting in cluster-level confounding. Measuring and modeling cluster attributes can be difficult and statistical methods exist to control for all unmeasured cluster characteristics. An assumption of these methods however is that characteristics of the cluster and the effects of those characteristics on the outcome (as well as probability of treatment assignment when using covariate balancing methods) are constant over time. In this paper, we consider methods that relax this assumption and allow for estimation of treatment effects in the presence of unmeasured time-dependent cluster confounding. The methods are based on matching with the propensity score and incorporate unmeasured time-specific cluster effects by performing matching within clusters or using fixed- or random-cluster effects in the propensity score model. The methods are illustrated using data to compare the effectiveness of two total hip devices with respect to survival of the device and a simulation study is performed that compares the proposed methods. One method that was found to perform well is matching within surgeon clusters partitioned by time. Considerations in implementing the proposed methods are discussed.