Login / Signup

Magnetic-Acoustic Sequentially Actuated CAR T Cell Microrobots for Precision Navigation and In Situ Antitumor Immunoactivation.

Xiaofan TangYe YangMingbin ZhengTing YinGuojun HuangZhengyu LaiBaozhen ZhangZe ChenTiantian XuTeng MaHong PanLintao Cai
Published in: Advanced materials (Deerfield Beach, Fla.) (2023)
Despite its clinical success, chimeric antigen receptor T (CAR T)-cell immunotherapy remains limited in solid tumors, owing to the harsh physical barriers and immunosuppressive microenvironment. Here a CAR-T-cell-based live microrobot (M-CAR T) is created by decorating CAR T with immunomagnetic beads using click conjugation. M-CAR Ts are capable of magnetic-acoustic actuation for precision targeting and in situ activation of antitumor immune responses. Sequential actuation endows M-CAR Ts with magnetically actuated anti-flow and obstacle avoidance as well as tissue penetration driven by acoustic propulsion, enabling efficient migration and accumulation in artificial tumor models. In vivo, sequentially actuated M-CAR Ts achieves long-distance targeting and accumulate at the peritumoural area under programmable magnetic guidance, and subsequently acoustic tweezers actuate M-CAR Ts to migrate into deep tumor tissues, resulting in a 6.6-fold increase in accumulated exogenous CD8 + CAR T cells compared with that without actuation. Anti-CD3/CD28 immunomagnetic beads stimulate infiltrated CAR T proliferation and activation in situ, significantly enhancing their antitumor efficacy. Thus, this sequential-actuation-guided cell microrobot combines the merits of autonomous targeting and penetration of intelligent robots with in situ T-cell immunoactivation, and holds considerable promise for precision navigation and cancer immunotherapies.
Keyphrases
  • immune response
  • cancer therapy
  • gene expression
  • squamous cell carcinoma
  • mental health
  • physical activity
  • cell therapy
  • drug delivery
  • young adults
  • papillary thyroid
  • toll like receptor
  • big data