Login / Signup

Production and characterization of multifacet exopolysaccharide from an agricultural isolate, Bacillus subtilis.

Bhavana V MohiteSunil H KoliJamatsing D RajputVikas S PatilTarun AgarwalSatish Vitthal Patil
Published in: Biotechnology and applied biochemistry (2019)
This study aims to explore the fermentative production and physicochemical properties of an exopolysaccharide (EPS) produced from agricultural isolate, Bacillus subtilis S1 in submerged culture. The structural characterization (Ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and 13 C Nuclear magnetic resonance spectrometry) revealed that the EPS is an acidic heteropolymer consisting of glucose, glucuronic acid, pyruvic acid, and succinic acid. The non-Newtonian shear thickening nature of EPS with a 1.55 × 107  Da molecular weight is confirmed by rheology analysis. The extracted EPS was 61.3% amorphous with partial crystallinity (38.7%) as confirmed by X-ray diffraction analysis. The EPS shows two-step decomposition and thermal stability up to 300 °C as confirmed by thermogravimetric analysis and differential scanning calorimetry analysis. The EPS has a small Z-average particle size (74.29 nm), high porosity (92.99%), high water holding (92.39%), and absorption capacity (1,198%). The biocompatible nature is confirmed by cytotoxic testing on the human keratinocytes cell line. The demonstrated unique characteristics of Bacillus EPS presents it as a choice of biomaterial for diverse applications.
Keyphrases