Login / Signup

Blueprint of epitope-based multivalent and multipathogenic vaccines: targeted against the dengue and zika viruses.

Bishajit SarkarBishajit SarkarYusha ArafSowmen DasMohammad Jakir Hosen
Published in: Journal of biomolecular structure & dynamics (2020)
Both dengue virus (DENV) and zika virus (ZIKV) belong to the highly infectious Flaviviridae family that has already caused several outbreaks and epidemics in many countries. DENV and ZIKV cause two of the most wide spread mosquito-borne viral diseases in the world, dengue fever (DENF) and zika fever (ZIKF), respectively. In many regions around the world, both of these diseases can outbreak together and can be lethal as well as life-threatening. Unfortunately, there is no functional and satisfactory vaccine available to combat these viruses. Therefore, in this study, we have attempted to design a blue print of potential multivalent and multipathogenic vaccines using immunoinformatics approach, which can combat both the DENV and ZIKV infections, simultaneously. Initially, three vaccines were designed; containing highly antigenic, non-allergenic, and non-toxic epitopes of T-cell (100% conserved) and B-cell from all the four DENV serotypes and ZIKV. In total, nine cytotoxic T-lymphocytic (CTL), nine helper T-lymphocytic (HTL), and seven B-cell lymphocytic (BCL) epitopes were used to construct three vaccines using three different adjuvants, designated as 'V1', 'V2', and 'V3'. Later, V3 was found to be the best vaccine construct, determined by molecular docking analysis. Thereafter, several in silico validation studies including molecular dynamics simulation and immune simulation were performed which indicated that V3 might be quite stable and should generate substantial immune response in the biological environment. However, further in vivo and in vitro validation might be required to finally confirm the safety and efficacy of our suggested vaccine constructs.Communicated by Ramaswamy H. Sarma.
Keyphrases
  • dengue virus
  • zika virus
  • molecular docking
  • molecular dynamics simulations
  • aedes aegypti
  • immune response
  • sars cov
  • transcription factor
  • cancer therapy
  • drug delivery
  • climate change
  • monoclonal antibody
  • human health