Green electrochemical method for the synthesis of nitro and azo derivatives based on mefenamic acid.
Parvaneh AmooshahiSadegh KhazalpourAmeneh AmaniHossein MasoumiPublished in: Scientific reports (2022)
Electrochemical study of mefenamic acid (MFA) was carried out with details in water/ethanol mixture by the various voltammetric techniques. The results showed that the oxidation of MFA is highly dependent on pH and follows the E ir mechanism. The E pA1 -pH diagram plotted based on the differential pulse voltammograms shows two linear segments, 66 and 26 mV/pH slope. Also, the diffusion coefficient and the surface excess, Ӷ* of MFA in aqueous buffered solution, determined by using the single potential-step chronoamperometry and chronocoulometry methods. Electrochemical nitration of MFA in an aqueous solution and the presence of nitrite ion (1) were both investigated by the cyclic voltammetry and controlled-potential coulometry techniques. Our results indicate that the oxidized form of MFA participates in a Michael-type addition reaction with nitrite ion (1) to form the corresponding Nitromefenamic acids (MFA-4-NO 2 and MFA-5-NO 2 ). Also, in another part, a computational study based on the density functional theory (DFT/B3LYP) was performed for the prediction of the best possible pathway in the nucleophilic addition of nitrite ion (1). The electrochemical reduction of produced nitromefenamic acids was investigated using cyclic voltammetry and controlled-potential coulometry techniques. Eventually, two new azo derivatives have been generated via electroreduction of produced nitromefenamic acids and conduction of diazotization reaction, respectively. Both nitro and azo products are approved as paints.