Login / Signup

Fluorescent Immunoassay for the Detection of Pathogenic Bacteria at the Single-Cell Level Using Carbon Dots-Encapsulated Breakable Organosilica Nanocapsule as Labels.

Lu YangWenfang DengChang ChengYueming TanQingji XieShouzhuo Yao
Published in: ACS applied materials & interfaces (2018)
Herein, carbon dots (CDs)-encapsulated breakable organosilica nanocapsules (BONs) were facilely prepared and used as advanced fluorescent labels for ultrasensitive detection of Staphylococcus aureus. The CDs were entrapped in organosilica shells by cohydrolyzation of tetraethyl orthosilicate and bis[3-(triethoxysilyl)propyl]disulfide to form core-shell CDs@BONs, where hundreds of CDs were encapsulated in each nanocapsule. Immunofluorescent nanocapsules, i.e., anti-S. aureus antibody-conjugated CDs@BONs, were prepared to specifically recognize S. aureus. Before fluorescent detection, CDs were released from the BONs by simple NaBH4 reduction. The fluorescent signals were amplified by 2 orders of magnitude because of hundreds of CDs encapsulated in each nanocapsule, compared with a conventional immunoassay using CDs as fluorescent labels. A linear range was obtained at the S. aureus concentration from 1 to 200 CFU mL-1. CDs@BONs are also expected to expand to other systems and allow the detection of ultralow concentrations of targets.
Keyphrases