Application of HoloLens-based Augmented Reality and three-dimensional printed anatomical tooth reference models in dental education.
Piotr GradAnna M Przeklasa-BierowiecKrzysztof Piotr MalinowskiJan WitowskiKlaudia ProniewskaGrzegorz TatońPublished in: Anatomical sciences education (2022)
Tooth anatomy is fundamental knowledge used in everyday dental practice to reconstruct the occlusal surface during cavity fillings. The main objective of this project was to evaluate the suitability of two types of anatomical tooth reference models used to support reconstruction of the occlusal anatomy of the teeth: (1) a three-dimensional (3D)-printed model and (2) a model displayed in augmented reality (AR) using Microsoft HoloLens. The secondary objective was to evaluate three aspects impacting the outcome: clinical experience, comfort of work, and other variables. The tertiary objective was to evaluate the usefulness of AR in dental education. Anatomical models of crowns of three different molars were made using cone beam computed tomography image segmentation, printed with a stereolithographic 3D-printer, and then displayed in the HoloLens. Each participant reconstructed the occlusal anatomy of three teeth. One without any reference materials and two with an anatomical reference model, either 3D-printed or holographic. The reconstruction work was followed by the completion of an evaluation questionnaire. The maximum Hausdorff distances (Hmax) between the superimposed images of the specimens after the procedures and the anatomical models were then calculated. The results showed that the most accurate but slowest reconstruction was achieved with the use of 3D-printed reference models and that the results were not affected by other aspects considered. For this method, the Hmax was observed to be 630 μm (p = 0.004). It was concluded that while AR models can be helpful in dental anatomy education, they are not suitable replacements for physical models.