Development of Injectable Calcium Sulfate and Self-Setting Calcium Phosphate Composite Bone Graft Materials for Minimally Invasive Surgery.
Yu-Hsun ChiuI-Cheng ChenChen-Ying SuHsin-Hua TsaiTai-Horng YoungHsu-Wei FangPublished in: International journal of molecular sciences (2022)
The demand of bone grafting is increasing as the population ages worldwide. Although bone graft materials have been extensively developed over the decades, only a few injectable bone grafts are clinically available and none of them can be extruded from 18G needles. To overcome the existing treatment limitations, the aim of this study is to develop ideal injectable implants from biomaterials for minimally invasive surgery. An injectable composite bone graft containing calcium sulfate hemihydrate, tetracalcium phosphate, and anhydrous calcium hydrogen phosphate (CSH/CaP paste) was prepared with different CSH/CaP ratios and different concentrations of additives. The setting time, injectability, mechanical properties, and biocompatibility were evaluated. The developed injectable CSH/CaP paste (CSH/CaP 1:1 supplemented with 6% citric acid and 2% HPMC) presented good handling properties, great biocompatibility, and adequate mechanical strength. Furthermore, the paste was demonstrated to be extruded from a syringe equipped with 18G needles and exerted a great potential for minimally invasive surgery. The developed injectable implants with tissue repairing potentials will provide an ideal therapeutic strategy for minimally invasive surgery to apply in the treatment of maxillofacial defects, certain indications in the spine, inferior turbinate for empty nose syndrome (ENS), or reconstructive rhinoplasty.