The Influence of Astaxanthin on the Proliferation of Adipose-derived Mesenchymal Stem Cells in Gelatin-Methacryloyl (GelMA) Hydrogels.
Bo Young ChoiElna Paul ChalisserryMyoung Hwan KimHyun Wook KangIl-Whan ChoiSeung Yun NamPublished in: Materials (Basel, Switzerland) (2019)
Recently, astaxanthin, a red lipophilic pigment belonging to the xanthophyllic family of carotenoids, has shown the feasibility of its uses in tissue engineering and regenerative medicine, due to its excellent antioxidant activities and its abilities to enhance the self-renewal potency of stem cells. In this study, we demonstrate the influence of astaxanthin on the proliferation of adipose-derived mesenchymal stem cells in tissue-engineered constructs. The tissue engineered scaffolds were fabricated using photopolymerizable gelatin methacryloyl (GelMA) with different concentrations of astaxanthin. The effects of astaxanthin on cellular proliferation in two-dimensional environments were assessed using alamar blue assay and reverse transcription polymerase chain reaction (RT-PCR). Then, rheological properties, chemical structures and the water absorption of the fabricated astaxanthin-incorporated GelMA hydrogels were characterized using NMR analysis, rheological analysis and a swelling ratio test. Finally, the influence in three-dimensional environments of astaxanthin-incorporated GelMA hydrogels on the proliferative potentials of adipose-derived stem cells was assessed using alamar blue assay and the confocal imaging with Live/dead staining. The experimental results of the study indicate that an addition of astaxanthin promises to induce stem cell potency via proliferation, and that it can be a useful tool for a three-dimensional culture system and various tissue engineering applications.