Login / Signup

Substitution Effects Regulate the Formation of Butterfly-Shaped Tetranuclear Dy(III) Cluster and Dy-Based Hydrogen-Bonded Helix Frameworks: Structure and Magnetic Properties.

Zhong-Hong ZhuHui-Feng WangShui YuZhong-Hong ZhuHai-Ling WangBing YinFu-Pei Liang
Published in: Inorganic chemistry (2020)
The generation of two types of complexes with different topological connections and completely different structural types merely via the substitution effect is extremely rare, especially for -CH3 and -C2H5 substituents with similar physical and chemical properties. Herein, we used 3-methoxysalicylaldehyde, 1,2-cyclohexanediamine, and Dy(NO3)3·6H2O to react under solvothermal conditions (CH3OH:CH3CN = 1:1) at 80 °C to obtain the butterfly-shaped tetranuclear DyIII cluster [Dy4(L1)4(μ3-O)2(NO3)2] (Dy4, H2L1 = 6,6'-((1E,1'E)-(cyclohexane-1,3-diylbis(azanylylidene))bis(methanylylidene))bis(2-methoxyphenol)). The ligand H2L1 was obtained by the Schiff base in situ reaction of 3-methoxysalicylaldehyde and 1,2-cyclohexanediamine. In the Dy4 structure, (L1)2- has two different coordination modes: μ2-η1:η2:η1:η1 and μ4-η1:η2:η1:η1:η2:η1. The four DyIII ions are in two coordination environments: N2O6 (Dy1) and O9 (Dy2). The magnetic testing of cluster Dy4 without the addition of an external field revealed that it exhibited a clear frequency-dependent behavior. We changed 3-methoxysalicylaldehyde to 3-ethoxysalicylaldehyde and obtained one case of a hydrogen-bonded helix framework, [DyL2(NO3)3]n·2CH3CN (Dy-HHFs, H2L2 = 6,6'-((1E,1'E)-(cyclohexane-1,3-diylbis(azanylylidene))bis(methanylylidene))bis(2-ethoxyphenol)), under the same reaction conditions. The ligand H2L2 was formed by the Schiff base in situ reaction of 3-ethoxysalicylaldehyde and 1,2-cyclohexanediamine. All DyIII ions in the Dy-HHFs structure are in the same coordination environment (O9). The twisted S-shaped (L2)2- ligand is linked by a Dy(III) ion to form a spiral chain. The spiral chain is one of the independent units that is interconnected to form Dy-HHFs through three strong hydrogen-bonding interactions. Magnetic studies show that Dy-HHFs exhibits single-ion-magnet behavior (Ueff = 68.59 K and τ0 = 1.10 × 10-7 s, 0 Oe DC field; Ueff = 131.5 K and τ0 = 1.22 × 10-7 s, 800 Oe DC field). Ab initio calculations were performed to interpret the dynamic magnetic performance of Dy-HHFs, and a satisfactory consistency between theory and experiment exists.
Keyphrases
  • single molecule
  • squamous cell carcinoma
  • molecular dynamics simulations
  • lymph node metastasis
  • dendritic cells
  • molecular dynamics
  • quantum dots
  • mass spectrometry
  • single cell
  • transcription factor
  • aqueous solution