A cost efficient spatially balanced hierarchical sampling design for monitoring boreal birds incorporating access costs and habitat stratification.
Steven L Van WilgenburgC Lisa MahonGreg CampbellLogan McLeodMargaret CampbellDean EvansWendy EastonCharles M FrancisSamuel HachéCraig S MachtansCaitlin MaderRhiannon F PankratzRich RussellAdam C SmithPeter ThomasJudith D TomsJunior A TremblayPublished in: PloS one (2020)
Predicting and mitigating impacts of climate change and development within the boreal biome requires a sound understanding of factors influencing the abundance, distribution, and population dynamics of species inhabiting this vast biome. Unfortunately, the limited accessibility of the boreal biome has resulted in sparse and spatially biased sampling, and thus our understanding of boreal bird population dynamics is limited. To implement effective conservation of boreal birds, a cost-effective approach to sampling the boreal biome will be needed. Our objective was to devise a sampling scheme for monitoring boreal birds that would improve our ability to model species-habitat relationships and monitor changes in population size and distribution. A statistically rigorous design to achieve these objectives would have to be spatially balanced and hierarchically structured with respect to ecozones, ecoregions and political jurisdictions. Therefore, we developed a multi-stage hierarchically structured sampling design known as the Boreal Optimal Sampling Strategy (BOSS) that included cost constraints, habitat stratification, and optimization to provide a cost-effective alternative to other common monitoring designs. Our design provided similar habitat and spatial representation to habitat stratification and equal-probability spatially balanced designs, respectively. Not only was our design able to achieve the desired habitat representation and spatial balance necessary to meet our objectives, it was also significantly less expensive (1.3-2.6 times less) than the alternative designs we considered. To further balance trade-offs between cost and representativeness prior to field implementation, we ran multiple iterations of the BOSS design and selected the one which minimized predicted costs while maximizing a multi-criteria evaluation of representativeness. Field implementation of the design in three vastly different regions over three field seasons showed that the approach can be implemented in a wide variety of logistical scenarios and ecological conditions. We provide worked examples and scripts to allow our approach to be implemented or adapted elsewhere. We also provide recommendations for possible future refinements to our approach, but recommend that our design now be implemented to provide unbiased information to assess the status of boreal birds and inform conservation and management actions.