Evaluation of the terpenes β-caryophyllene, α-terpineol, and γ-terpinene in the mouse chronic constriction injury model of neuropathic pain: possible cannabinoid receptor involvement.
Joshua A BilbreyYuma T OrtizJasmine S FelixLance R McMahonJenny L WilkersonPublished in: Psychopharmacology (2021)
Pain is one of the most common reasons to seek medical attention, and chronic pain is a worldwide epidemic. Anecdotal reports suggest cannabis may be an effective analgesic. As cannabis contains the terpenes α-terpineol, β-caryophyllene, and γ-terpinene, we hypothesized these terpenes would produce analgesia in a mouse model of neuropathic pain. We used the chronic constriction injury of the sciatic nerve mouse model, which produces mechanical allodynia, assessed via the von Frey assay, as well as thermal hyperalgesia assessed via the hotplate assay. Compounds were further assessed in tests of locomotor activity, hypothermia, and acute antinociception. Each terpene produced dose-related reversal of mechanical allodynia and thermal hyperalgesia. Thermal hyperalgesia displayed higher sensitivity to the effects of each terpene than mechanical allodynia, and the rank order potency of the terpenes was α-terpineol > β-caryophyllene > γ-terpinene. To examine the involvement of cannabinoid receptors, further tests were conducted in mice lacking either functional cannabinoid type 1 receptors (CB1R (-/-)) or cannabinoid type 2 receptors (CB2R (-/-)). Compared to wild type mice, CB1R (-/-) mice treated with α-terpineol displayed a 2.91-fold decrease in potency to reverse mechanical allodynia; in CB2R (-/-) mice, the potency of α-terpineol was decreased 11.73-fold. The potency of β-caryophyllene to reverse mechanical allodynia decreased 1.80-fold in CB2R (-/-) mice. Each terpene produced a subset of effects in tests of locomotor activity, hypothermia, and acute antinociception. These findings suggest α-terpineol, β-caryophyllene, and γ-terpinene may have differential cannabinoid receptor activity and a pharmacological profile that may yield new efficacious analgesics.
Keyphrases
- neuropathic pain
- spinal cord injury
- spinal cord
- wild type
- high fat diet induced
- mouse model
- chronic pain
- cardiac arrest
- drug induced
- liver failure
- healthcare
- brain injury
- respiratory failure
- intensive care unit
- skeletal muscle
- working memory
- aortic dissection
- metabolic syndrome
- acute respiratory distress syndrome
- extracorporeal membrane oxygenation
- mechanical ventilation