Login / Signup

Bridging a Century-Old Problem: The Pathophysiology and Molecular Mechanisms of HA Filler-Induced Vascular Occlusion (FIVO)-Implications for Therapeutic Interventions.

Danny J Soares
Published in: Molecules (Basel, Switzerland) (2022)
Biocompatible hyaluronic acid (HA, hyaluronan) gel implants have altered the therapeutic landscape of surgery and medicine, fostering an array of innovative products that include viscosurgical aids, synovial supplements, and drug-eluting nanomaterials. However, it is perhaps the explosive growth in the cosmetic applications of injectable dermal fillers that has captured the brightest spotlight, emerging as the dominant modality in plastic surgery and aesthetic medicine. The popularity surge with which injectable HA fillers have risen to in vogue status has also brought a concomitant increase in the incidence of once-rare iatrogenic vaso-occlusive injuries ranging from disfiguring facial skin necrosis to disabling neuro-ophthalmological sequelae. As our understanding of the pathophysiology of these injuries has evolved, supplemented by more than a century of astute observations, the formulation of novel therapeutic and preventative strategies has permitted the amelioration of this burdensome complication. In this special issue article, we review the relevant mechanisms underlying HA filler-induced vascular occlusion (FIVO), with particular emphasis on the rheo-mechanical aspects of vascular blockade; the thromboembolic potential of HA mixtures; and the tissue-specific ischemic susceptibility of microvascular networks, which leads to underperfusion, hypoxia, and ultimate injury. In addition, recent therapeutic advances and novel considerations on the prevention and management of muco-cutaneous and neuro-ophthalmological complications are examined.
Keyphrases