Login / Signup

Interpreting population and family-based genome-wide association studies in the presence of confounding.

Carl VellerGraham M Coop
Published in: bioRxiv : the preprint server for biology (2023)
A central aim of genome-wide association studies (GWASs) is to estimate direct genetic effects: the causal effects on an individual's phenotype of the alleles that they carry. However, estimates of direct effects can be subject to genetic and environmental confounding, and can also absorb the 'indirect' genetic effects of relatives' genotypes. Recently, an important development in controlling for these confounds has been the use of within-family GWASs, which, because of the randomness of Mendelian segregation within pedigrees, are often interpreted as producing unbiased estimates of direct effects. Here, we present a general theoretical analysis of the influence of confounding in standard population-based and within-family GWASs. We show that, contrary to common interpretation, family-based estimates of direct effects can be biased by genetic confounding. In humans, such biases will often be small per-locus, but can be compounded when effect size estimates are used in polygenic scores. We illustrate the influence of genetic confounding on population- and family-based estimates of direct effects using models of assortative mating, population stratification, and stabilizing selection on GWAS traits. We further show how family-based estimates of indirect genetic effects, based on comparisons of parentally transmitted and untransmitted alleles, can suffer substantial genetic confounding. In addition to known biases that can arise in family-based GWASs when interactions between family members are ignored, we show that biases can also arise from gene-by-environment (G×E) interactions when parental genotypes are not distributed identically across interacting environmental and genetic backgrounds. We conclude that, while family-based studies have placed GWAS estimation on a more rigorous footing, they carry subtle issues of interpretation that arise from confounding and interactions.
Keyphrases
  • genome wide
  • copy number
  • genome wide association
  • risk assessment
  • case control