Login / Signup

Combining artificial intelligence and physics-based modeling to directly assess atomic site stabilities: from sub-nanometer clusters to extended surfaces.

Philomena Schlexer LamoureuxTej S ChoksiVerena StreibelFrank Abild-Pedersen
Published in: Physical chemistry chemical physics : PCCP (2021)
The performance of functional materials is dictated by chemical and structural properties of individual atomic sites. In catalysts, for example, the thermodynamic stability of constituting atomic sites is a key descriptor from which more complex properties, such as molecular adsorption energies and reaction rates, can be derived. In this study, we present a widely applicable machine learning (ML) approach to instantaneously compute the stability of individual atomic sites in structurally and electronically complex nano-materials. Conventionally, we determine such site stabilities using computationally intensive first-principles calculations. With our approach, we predict the stability of atomic sites in sub-nanometer metal clusters of 3-55 atoms with mean absolute errors in the range of 0.11-0.14 eV. To extract physical insights from the ML model, we introduce a genetic algorithm (GA) for feature selection. This algorithm distills the key structural and chemical properties governing the stability of atomic sites in size-selected nanoparticles, allowing for physical interpretability of the models and revealing structure-property relationships. The results of the GA are generally model and materials specific. In the limit of large nanoparticles, the GA identifies features consistent with physics-based models for metal-metal interactions. By combining the ML model with the physics-based model, we predict atomic site stabilities in real time for structures ranging from sub-nanometer metal clusters (3-55 atom) to larger nanoparticles (147 to 309 atoms) to extended surfaces using a physically interpretable framework. Finally, we present a proof of principle showcasing how our approach can determine stable and active nanocatalysts across a generic materials space of structure and composition.
Keyphrases