Login / Signup

Serum kisspeptin: New possible biomarker for sexual behaviour and sperm concentration in buffalo bulls.

Sonam BhardwajPradeep KumarAndonissamy JeromeSuman RaveshChandrashekhar PatilPawan SinghPuran Chand Lailer
Published in: Reproduction in domestic animals = Zuchthygiene (2020)
The study was designed to decipher the inter-relationship between peripheral hormones (kisspeptin and testosterone), sexual behaviour and seminal variables of Murrah buffalo bulls (n = 134). In this study, we recorded that 13%, 37%, 40%, 6% and 4% Murrah buffalo bulls had reaction time of <30, 31-60, 61-180, 181-300 and >300 s, respectively. Further, it was observed that 4%, 85% and 10% buffalo bulls were sexually aggressive, active and dull, respectively, during semen collection. The courtship behaviour was not found to be desirable for the bulls used for the semen collection. Mean of ejaculate volume, sperm concentration and mass motility (0-5 scale) were 3.57 ml, 977.11 million/ml, 2.7, respectively. Correlation studies revealed that the reaction time was positively correlated with courtship behaviour and body weight, and negatively correlated with sexual aggressiveness and sperm concentration. Serum kisspeptin in buffalo bulls, measured for the first time, was found to 3.8 ± 0.7 ng/ml. Serum kisspeptin and testosterone level are negatively correlated to each other and kisspeptin level influenced the sexual behaviour (reaction time, sexual aggressiveness and penile erection) of study bulls. Serum kisspeptin was higher in the buffalo bulls with higher sperm concentration indicating its role in spermatogenesis. In conclusion, for the first time basic information related to sexual behaviour of Murrah buffalo bulls in large population along with its inter-relationship with peripheral hormones (kisspeptin and testosterone) has been documented.
Keyphrases
  • mental health
  • replacement therapy
  • staphylococcus aureus
  • pseudomonas aeruginosa
  • biofilm formation
  • single cell
  • smoking cessation
  • case control
  • electron transfer