Login / Signup

Dogs wait longer for better rewards than wolves in a delay of gratification task: but why?

Friederike RangeDésirée BrucksZsófia Virányi
Published in: Animal cognition (2020)
Self-control has been shown to be linked with being cooperative and successful in humans and with the g-factor in chimpanzees. As such, it is likely to play an important role in all forms of problem-solving. Self-control, however, does not just vary across individuals but seems also to be dependent on the ecological niche of the respective species. With dogs having been selected to live in the human environment, several domestication hypotheses have predicted that dogs are better at self-control and thus more tolerant of longer delays than wolves. Here we set out to test this prediction by comparing dogs' and wolves' self-control abilities using a delay of gratification task where the animals had to wait for a predefined delay duration to exchange a low-quality reward for a high-quality reward. We found that in our task, dogs outperformed the wolves waiting an average of 66 s vs. 24 s in the wolves. Food quality did not influence how long the animals waited for the better reward. However, dogs performed overall better in motivation trials than the wolves, although the dogs' performance in those trials was dependent on the duration of the delays in the test trials, whereas this was not the case for the wolves. Overall, the data suggest that selection by humans for traits influencing self-control rather than ecological factors might drive self-control abilities in wolves and dogs. However, several other factors might contribute or explain the observed differences including the presence of the humans, which might have inhibited the dogs more than the wolves, lower motivation of the wolves compared to the dogs to participate in the task and/or wolves having a better understanding of the task contingencies. These possible explanations need further exploration.
Keyphrases
  • endothelial cells
  • machine learning
  • dna methylation
  • risk assessment
  • deep learning
  • human health