Recent Advances in Electrochemical Biosensors for Monitoring Animal Cell Function and Viability.
Kyeong-Mo KooChang-Dae KimFu Nan JuHuijung KimCheol-Hwi KimTae-Hyung KimPublished in: Biosensors (2022)
Redox reactions in live cells are generated by involving various redox biomolecules for maintaining cell viability and functions. These qualities have been exploited in the development of clinical monitoring, diagnostic approaches, and numerous types of biosensors. Particularly, electrochemical biosensor-based live-cell detection technologies, such as electric cell-substrate impedance (ECIS), field-effect transistors (FETs), and potentiometric-based biosensors, are used for the electrochemical-based sensing of extracellular changes, genetic alterations, and redox reactions. In addition to the electrochemical biosensors for live-cell detection, cancer and stem cells may be immobilized on an electrode surface and evaluated electrochemically. Various nanomaterials and cell-friendly ligands are used to enhance the sensitivity of electrochemical biosensors. Here, we discuss recent advances in the use of electrochemical sensors for determining cell viability and function, which are essential for the practical application of these sensors as tools for pharmaceutical analysis and toxicity testing. We believe that this review will motivate researchers to enhance their efforts devoted to accelerating the development of electrochemical biosensors for future applications in the pharmaceutical industry and stem cell therapeutics.
Keyphrases
- label free
- stem cells
- gold nanoparticles
- ionic liquid
- molecularly imprinted
- oxidative stress
- induced apoptosis
- magnetic resonance imaging
- squamous cell carcinoma
- copy number
- high resolution
- cell cycle arrest
- mass spectrometry
- bone marrow
- quality improvement
- mesenchymal stem cells
- simultaneous determination
- young adults
- data analysis
- liquid chromatography
- pi k akt
- dual energy