Login / Signup

Multiplex SERS Chemosensing of Metal Ions via DNA-Mediated Recognition.

Luca GuerriniRamon A Alvarez-Puebla
Published in: Analytical chemistry (2019)
The combination of molecular sensors and plasmonic materials is emerging as one of the most promising approaches for ultrasensitive SERS-based detection of metal ions in complex fluids. However, only a very small fraction of the large pool of potential chemosensors described in classical analytical chemistry has been successfully implemented into viable SERS platforms for metal ion determination. This is due to the molecular restrictions that require the chemosensor to adhere onto the plasmonic surface while retaining the capability to undergo large structural alterations upon metal ion binding. In this work, we demonstrate that the structural and functional plasticity of DNA for interacting with small aromatic molecules can be exploited to this end. DNA coating of silver nanoparticles modulates the interaction of the commercially available alizarin red S (ARS) chemosensor with the nanomaterial, translating its recognition capabilities from bulk solution onto the plasmonic surface, while simultaneously directing the particle assembling into highly efficient SERS clusters. The sensing approach was successfully applied to the multiplex, quantitative determination of Al(III) and Fe(III) in tap water in the subppb level.
Keyphrases