Login / Signup

Ion-Type Dependence of DNA Electronic Excitation in Water under Proton, α-Particle, and Carbon Ion Irradiation: A First-Principles Simulation Study.

Christopher ShepardYosuke Kanai
Published in: The journal of physical chemistry. B (2023)
Understanding how the electronic excitation of DNA changes in response to different high-energy particles is central to advancing ion beam cancer therapy and other related approaches, such as boron neutron capture therapy. While protons have been the predominant ions of choice in ion beam cancer therapy, heavier ions, particularly carbon ions, have drawn significant attention over the past decade. Carbon ions are expected to transfer larger amounts of energy according to linear response theory. However, molecular-level details of the electronic excitation under heavier ion irradiation remain unknown. In this work, we use real-time time-dependent density functional theory simulations to examine the quantum-mechanical details of DNA electronic excitations in water under proton, α-particle, and carbon ion irradiation. Our results show that the energy transfer does indeed increase for the heavier ions, while the excitation remains highly conformal. However, the increase in the energy transfer rate, measured by electronic stopping power, does not match the prediction by the linear response model, even when accounting for the velocity dependence of the irradiating ion's charge. The simulations also reveal that while the number of holes generated on DNA increases for heavier ions, the increase is only partially responsible for the larger stopping power. Larger numbers of highly energetic holes formed from the heavier ions also contribute significantly to the increased electronic stopping power.
Keyphrases