Login / Signup

Co-immunization with L-Myc enhances CD8+ or CD103+ DCs mediated tumor-specific multi-functional CD8+ T cell responses.

Dafei ChaiZichun ZhangNan JiangJiage DingDong QiuShang Yuchen ShiGang WangLin FangHuizhong LiHui TianJie YangQing ZhangJun-Nian Zheng
Published in: Cancer science (2021)
Renal carcinoma shows a high risk of invasion and metastasis without effective treatment. Herein, we developed a chitosan (CS) nanoparticle-mediated DNA vaccine containing an activated factor L-Myc and a tumor-specific antigen CAIX for renal carcinoma treatment. The subcutaneous tumor models were intramuscularly immunized with CS-pL-Myc/pCAIX or control vaccine, respectively. Compared with single immunization group, the tumor growth was significantly suppressed in CS-pL-Myc/pCAIX co-immunization group. The increased proportion and mature of CD11c+ DCs, CD8+ CD11c+ DCs and CD103+ CD11c+ DCs were observed in the splenocytes from CS-pL-Myc/pCAIX co-immunized mice. Furthermore, the enhanced antigen-specific CD8+ T lymphocyte proliferation, cytotoxic T lymphocyte (CTL) responses, and multi-functional CD8+ T cell induction were detected in CS-pL-Myc/pCAIX co-immunization group compared with CS-pCAIX immunization group. Of note, the depletion of CD8 T cells resulted in the reduction of CD8+ T cells or CD8+ CD11c+ DCs and the loss of anti-tumor efficacy induced by CS-pL-Myc/pCAIX vaccine, suggesting the therapeutic efficacy of the vaccine was required for CD8+ DCs and CD103+ DCs mediated CD8+ T cells responses. Likewise, CS-pL-Myc/pCAIX co-immunization also significantly inhibited the lung metastasis of renal carcinoma models accompanied with the increased induction of multi-functional CD8+ T cell responses. Therefore, these results indicated that CS-pL-Myc/pCAIX vaccine could effectively induce CD8+ DCs and CD103+ DCs mediated tumor-specific multi-functional CD8+ T cell responses and exert the anti-tumor efficacy. This vaccine strategy offers a potential and promising approach for solid or metastatic tumor treatment.
Keyphrases
  • transcription factor
  • nk cells
  • squamous cell carcinoma
  • signaling pathway
  • type diabetes
  • drug delivery
  • risk assessment
  • adipose tissue
  • climate change
  • single molecule
  • human health
  • anti inflammatory