Login / Signup

Markhor-derived Introgression of a Genomic Region Encompassing PAPSS2 Confers High-altitude Adaptability in Tibetan Goats.

Chao LiYujiang WuBingchun ChenYudong CaiJiazhong GuoAlexander S LeonardPeter KaldsShiwei ZhouJingchen ZhangPing ZhouShangqu GanTing JiaTianchun PuLangda SuoYan LiKe ZhangLan LiMyagmarsuren PurevdorjXihong WangMing LiYu WangYao LiuShuhong HuangTad SonstegardMing-Shan WangStephen KempHubert PauschYulin ChenJian-Lin HanYu JiangXiaolong Wang
Published in: Molecular biology and evolution (2022)
Understanding the genetic mechanism of how animals adapt to extreme conditions is fundamental to determine the relationship between molecular evolution and changing environments. Goat is one of the first domesticated species and has evolved rapidly to adapt to diverse environments, including harsh high-altitude conditions with low temperature and poor oxygen supply but strong ultraviolet radiation. Here, we analyzed 331 genomes of domestic goats and wild caprid species living at varying altitudes (high > 3000 m above sea level and low < 1200 m), along with a reference-guided chromosome-scale assembly (contig-N50: 90.4 Mb) of a female Tibetan goat genome based on PacBio HiFi long reads, to dissect the genetic determinants underlying their adaptation to harsh conditions on the Qinghai-Tibetan Plateau (QTP). Population genomic analyses combined with genome-wide association studies (GWAS) revealed a genomic region harboring the 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (PAPSS2) gene showing strong association with high-altitude adaptability (PGWAS = 3.62 × 10-25) in Tibetan goats. Transcriptomic data from 13 tissues revealed that PAPSS2 was implicated in hypoxia-related pathways in Tibetan goats. We further verified potential functional role of PAPSS2 in response to hypoxia in PAPSS2-deficient cells. Introgression analyses suggested that the PAPSS2 haplotype conferring the high-altitude adaptability in Tibetan goats originated from a recent hybridization between goats and a wild caprid species, the markhor (Capra falconeri). In conclusion, our results uncover a hitherto unknown contribution of PAPSS2 to high-altitude adaptability in Tibetan goats on QTP, following interspecific introgression and natural selection.
Keyphrases