Synthesis, Assembly, and Sizing of Neutral, Lanthanide Substituted Molybdenum Blue Wheels {Mo90Ln10}.
Eduard Garrido RibóNicola L BellWeimin XuanJiancheng LuoDe-Liang LongTianbo LiuLeroy CroninPublished in: Journal of the American Chemical Society (2020)
Polyoxometalate molybdenum blue (MB) complexes typically exist as discrete multianionic clusters and are composed of repeating Mo building units. MB wheels such as {Mo176} and {Mo154} are made from pentagon-centered {Mo8} building blocks joined by equal number of {Mo1} units as loin, and {Mo2} dimer units as skirt along the ring edge, with the ring sizes of the MB wheels modulated by the {Mo2} units. Herein we report a new class of contracted lanthanide-doped MB structures that have replaced all the {Mo2} units with lanthanide ions on the inner rim, giving the general formula {Mo90Ln10}. We show three examples of this new decameric {Mo90Ln10} (Ln = La, Ce, and Pr) framework synthesized by high temperature reduction and demonstrate that later Ln ions result in {Mo92Ln9} (Ln = Nd, Sm), conserving one {Mo2} linker unit in its structure, as a consequence of the lanthanide contraction. Remarkably the {Mo90Ln10} compounds are the first examples of charge-neutral molybdate wheels as confirmed by BVS, solubility experiments, and redox titrations. We detail our full synthetic optimization for the isolation of these clusters and complete characterization by X-ray, TGA, UV-vis, and ICP studies. Finally, we show that this fine-tuned self-assembly process can be utilized to selectively enrich Ln-MB wheels for effective separation of lanthanides.