Characterisation of Cartilage Damage via Fusing Mid-Infrared, Near-Infrared, and Raman Spectroscopic Data.
Rubina ShaikhValeria TafintsevaErvin NippolainenVesa VirtanenJohanne SolheimBoris ZimmermannSimo S SaarakkalaJuha TöyräsAchim KohlerIsaac O AfaraPublished in: Journal of personalized medicine (2023)
Mid-infrared spectroscopy (MIR), near-infrared spectroscopy (NIR), and Raman spectroscopy are all well-established analytical techniques in biomedical applications. Since they provide complementary chemical information, we aimed to determine whether combining them amplifies their strengths and mitigates their weaknesses. This study investigates the feasibility of the fusion of MIR, NIR, and Raman spectroscopic data for characterising articular cartilage integrity. Osteochondral specimens from bovine patellae were subjected to mechanical and enzymatic damage, and then MIR, NIR, and Raman data were acquired from the damaged and control specimens. We assessed the capacity of individual spectroscopic methods to classify the samples into damage or control groups using Partial Least Squares Discriminant Analysis (PLS-DA). Multi-block PLS-DA was carried out to assess the potential of data fusion by combining the dataset by applying two-block (MIR and NIR, MIR and Raman, NIR and Raman) and three-block approaches (MIR, NIR, and Raman). The results of the one-block models show a higher classification accuracy for NIR (93%) and MIR (92%) than for Raman (76%) spectroscopy. In contrast, we observed the highest classification efficiency of 94% and 93% for the two-block (MIR and NIR) and three-block models, respectively. The detailed correlative analysis of the spectral features contributing to the discrimination in the three-block models adds considerably more insight into the molecular origin of cartilage damage.
Keyphrases
- raman spectroscopy
- cell proliferation
- long non coding rna
- long noncoding rna
- photodynamic therapy
- drug release
- fluorescence imaging
- fluorescent probe
- oxidative stress
- electronic health record
- machine learning
- molecular docking
- big data
- magnetic resonance
- drug delivery
- magnetic resonance imaging
- radiation therapy
- deep learning
- data analysis
- label free
- risk assessment
- social media
- climate change
- hydrogen peroxide
- extracellular matrix
- molecular dynamics simulations