Login / Signup

Ultracold Bosons on a Regular Spherical Mesh.

Santi Prestipino
Published in: Entropy (Basel, Switzerland) (2020)
Here, the zero-temperature phase behavior of bosonic particles living on the nodes of a regular spherical mesh ("Platonic mesh") and interacting through an extended Bose-Hubbard Hamiltonian has been studied. Only the hard-core version of the model for two instances of Platonic mesh is considered here. Using the mean-field decoupling approximation, it is shown that the system may exist in various ground states, which can be regarded as analogs of gas, solid, supersolid, and superfluid. For one mesh, by comparing the theoretical results with the outcome of numerical diagonalization, I manage to uncover the signatures of diagonal and off-diagonal spatial orders in a finite quantum system.
Keyphrases
  • squamous cell carcinoma
  • molecular dynamics
  • genome wide
  • molecular docking
  • early stage
  • psychometric properties