Semi-dominant mutation in the cysteine-rich receptor-like kinase gene, ALS1, conducts constitutive defence response in rice.
D DuM LiuY XingX ChenY ZhangM ZhuX LuQ ZhangY LingX SangY LiC ZhangGuang-Hua HePublished in: Plant biology (Stuttgart, Germany) (2018)
Plants have evolved a sophisticated two-branch defence system to prevent the growth and spread of pathogen infection. The novel Cys-rich repeat (CRR) containing receptor-like kinases, known as CRKs, were reported to mediate defence resistance in plants. For rice, there are only two reports of CRKs. A semi-dominant lesion mimic mutant als1 (apoptosis leaf and sheath 1) in rice was identified to demonstrate spontaneous lesions on the leaf blade and sheath. A map-based cloning strategy was used for fine mapping and cloning of ALS1, which was confirmed to be a typical CRK in rice. Functional studies of ALS1 were conducted, including phylogenetic analysis, expression analysis, subcellular location and blast resistance identification. Most pathogenesis-related (PR) genes and other defence-related genes were activated and up-regulated to a high degree. ALS1 was expressed mainly in the leaf blade and sheath, in which further study revealed that ALS1 was present in the vascular bundles. ALS1 was located in the cell membrane of rice protoplasts, and its mutation did not change its subcellular location. Jasmonic acid (JA) and salicylic acid (SA) accumulation were observed in als1, and enhanced blast resistance was also observed. The mutation of ALS1 caused a constitutively activated defence response in als1. The results of our study imply that ALS1 participates in a defence response resembling the common SA-, JA- and NH1-mediated defence responses in rice.