Login / Signup

Voltage imaging reveals that hippocampal interneurons tune memory-encoding pyramidal sequences.

Jiannis TaxidisBlake MadrugaMaxwell D MelinMichael Z LinPeyman Golshani
Published in: bioRxiv : the preprint server for biology (2023)
Hippocampal spiking sequences encode and link behavioral information across time. How inhibition sculpts these sequences remains unknown. We performed longitudinal voltage imaging of CA1 parvalbumin- and somatostatin-expressing interneurons in mice during an odor-cued working memory task, before and after training. During this task, pyramidal odor-specific sequences encode the cue throughout a delay period. In contrast, most interneurons encoded odor delivery, but not odor identity, nor delay time. Population inhibition was stable across days, with constant field turnover, though some cells retained odor-responses for days. At odor onset, a brief, synchronous burst of parvalbumin cells was followed by widespread membrane hyperpolarization and then rebound theta-paced spiking, synchronized across cells. Two-photon calcium imaging revealed that most pyramidal cells were suppressed throughout the odor. Positive pyramidal odor-responses coincided with interneuronal rebound spiking; otherwise, they had weak odor-selectivity. Therefore, inhibition increases the signal-to-noise ratio of cue representations, which is crucial for entraining downstream targets.
Keyphrases