Login / Signup

Hydrogen Bond Organic Frameworks as a Novel Electrochemiluminescence Luminophore: Simple Synthesis and Ultrasensitive Biosensing.

Nuo ZhangXin-Tao WangZuping XiongLi-Yan HuangYu JinAi-Jun WangPei-Xin YuanYa-Bing HeJiu-Ju Feng
Published in: Analytical chemistry (2021)
Nowadays, continuous efforts have been devoted to searching highly efficient electrochemiluminescence (ECL) emitters for applications in clinical diagnosis and food safety. In this work, triazinyl-based hydrogen bond organic frameworks (Tr-HOFs) were synthesized by N···H hydrogen bond self-assembly aggregation, where 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (phenyDAT) was prepared via the cyclization reaction and behaved as a novel ligand. Impressively, the resulting Tr-HOFs showed strong ECL responses with highly enhanced ECL efficiency (21.3%) relative to the Ru(bpy) 3 2+ standard, while phenyDAT hardly showed any ECL emission in aqueous phase. The Tr-HOFs innovatively worked as a new ECL luminophore to construct a label-free biosensor for assay of kanamycin (Kana). Specifically, the ECL response greatly weakened upon assembly of captured DNA with ferrocene (cDNA-Fc) onto the Tr-HOFs-modified electrode, while the ECL signals were adversely recovered by releasing linked DNA (L-DNA) from double-stranded DNA (dsDNA, hybridization of aptamer DNA (aptDNA) with L-DNA) due to the specific recognition of Kana with the aptDNA combined by the linkage of L-DNA and cDNA-Fc on the electrode. The as-built sensor showed a broadened linear range (1 nM-10 μM) and a limit of detection (LOD) down to 0.28 nM, which also displayed satisfactory results in the analysis of Kana in the milk and diluted human serum samples. This work offers a novel pathway to design an ECL emitter with organic molecules, holding great promise in biomedical analysis and food detection.
Keyphrases