Boosting the Brightness of Thiolated Surface-Enhanced Raman Scattering Nanoprobes by Maximal Utilization of the Three-Dimensional Volume of Electromagnetic Fields.
Jin LiFugang LiuJian YePublished in: The journal of physical chemistry letters (2022)
Self-assembled monolayers (SAMs) of thiols on plasmonic nanoparticles constitute one of the most common methods for fabricating surface-enhanced Raman scattering (SERS) nanoprobes with wide applications. However, this method greatly limits the sufficient utilization of electromagnetic fields derived from plasmon excitation of the nanoparticles, because the thickness of SAMs (<1 nm) is usually much smaller than the attenuation length (>10 nm) of the fields. To overcome this, we propose a three-dimensional (3D) volume-active SERS (VASERS) technique to break the SAM limit, which integrates large amounts of thiol reporters into polydopamine shells on silver nanoparticles via Michael addition and allows sufficient utilization of 3D electromagnetic fields, leading to a dramatic increase in the intensity of the signal of the nanoprobes by about one order of magnitude. We demonstrate the universality of this strategy on various thiol reporters and plasmonic substrates. We also show that orthogonal VASERS nanoprobes with alkyne readout allow for high-precision in vivo tumor targeting and margin delineation.