Login / Signup

Modulation of Insulin Resistance, Dyslipidemia and Serum Metabolome in iNOS Knockout Mice following Treatment with Nitrite, Metformin, Pioglitazone, and a Combination of Ampicillin and Neomycin.

Hobby AggarwalPriya PathakYashwant KumarKumaravelu JagaveluMadhu Dikshit
Published in: International journal of molecular sciences (2021)
Oxidative and nitrosative stress plays a pivotal role in the incidence of metabolic disorders. Studies from this lab and others in iNOS -/- mice have demonstrated occurrence of insulin resistance (IR), hyperglycemia and dyslipidemia highlighting the importance of optimal redox balance. The present study evaluates role of nitrite, L-arginine, antidiabetics (metformin, pioglitazone) and antibiotics (ampicillin-neomycin combination, metronidazole) on metabolic perturbations observed in iNOS -/- mice. The animals were monitored for glucose tolerance (IPGTT), IR (insulin, HOMA-IR, QUICKI), circulating lipids and serum metabolomics (LC-MS). Hyperglycemia, hyperinsulinemia and IR were rescued by nitrite, antidiabetics, and antibiotics treatments in iNOS -/- mice. Glucose intolerance was improved with nitrite, metformin and pioglitazone treatment, while ampicillin-neomycin combination normalised the glucose utilization in iNOS -/- mice. Increased serum phosphatidylethanolamine lipids in iNOS -/- mice were reversed by metformin, pioglitazone and ampicillin-neomycin; dyslipidemia was however marginally improved by nitrite treatment. The metabolic improvements were associated with changes in selected serum metabolites-purines, ceramide, 10-hydroxydecanoate, glucosaminate, diosmetin, sebacic acid, 3-nitrotyrosine and cysteamine. Bacterial metabolites-hippurate, indole-3-ethanol; IR marker-aminoadipate and oxidative stress marker-ophthalmate were reduced by pioglitazone and ampicillin-neomycin, but not by nitrite and metformin treatment. Results obtained in the present study suggest a crucial role of gut microbiota in the metabolic perturbations observed in iNOS -/- mice.
Keyphrases