Dual Dirac Nodal Line in Nearly Freestanding Electronic Structure of β-Sn Monolayer.
Ye-Shun LanChia-Ju ChenShu-Hua KuoYen-Hui LinAngus HuangJing-Yue HuangPin-Jui HsuCheng-Maw ChengHorng-Tay JengPublished in: ACS nano (2024)
Two-dimensional topological insulators (2D TIs) have distinct electronic properties that make them attractive for various applications, especially in spintronics. The conductive edge states in 2D TIs are protected from disorder and perturbations and are spin-polarized, which restrict current flow to a single spin orientation. In contrast, topological nodal line semimetals (TNLSM) are distinct from TIs because of the presence of a 1D ring of degeneracy formed from two bands that cross each other along a line in the Brillouin zone. These nodal lines are protected by topology and can be destroyed only by breaking certain symmetry conditions, making them highly resilient to disorder and defects. However, 2D TNLSMs do not possess protected boundary modes, which makes their investigation challenging. There have been several theoretical predictions of 2D TNLSMs, however, experimental realizations are rare. β-Sn, a metallic allotrope of tin with a superconducting temperature of 3.72 K, may be a candidate for a topological superconductor that can host Majorana Fermions for quantum computing. In this work, single layers of α-Sn and β-Sn on a Cu(111) substrate are successfully prepared and studied using scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and density functional theory calculations. The lattice and electronic structure undergo a topological transition from 2D topological insulator α-Sn to 2D TNLSM β-Sn, with two types of nodal lines coexisting in monolayer β-Sn. Such a realization of two types of nodal lines in one 2D material has not been reported to date. Moreover, we also observed an unexpected phenomenon of freestanding-like electronic structures of β-Sn/Cu(111), highlighting the potential of ultrathin β-Sn films as a platform for exploring the electronic properties of 2D TNLSM and topological superconductors, such as few-layer superconducting β-Sn in lateral contact with topological nodal line single-layer β-Sn.
Keyphrases
- density functional theory
- lymph node
- high resolution
- neoadjuvant chemotherapy
- molecular dynamics
- single molecule
- room temperature
- magnetic resonance imaging
- magnetic resonance
- high throughput
- squamous cell carcinoma
- mass spectrometry
- optical coherence tomography
- risk assessment
- gold nanoparticles
- radiation therapy
- rectal cancer
- metal organic framework
- contrast enhanced
- single cell