Discontinuity in Fast Dynamics at the Glass Transition of ortho-Terphenyl.
David J HoffmanMichael D FayerPublished in: The journal of physical chemistry. B (2017)
The dynamics of the molecular glass former ortho-terphenyl through the glass transition were observed with two-dimensional infrared vibrational spectroscopy measurements of spectral diffusion using the small probe molecule phenylselenocyanate. Although the slow diffusive motions were not visible on the experimental time scale, a picosecond-scale exponential relaxation was observed at temperatures from above to well below the glass transition temperature. The characteristic time scale has a smooth temperature dependence from the liquid into the glass phase, but the range of vibrational frequencies the probe samples displayed a discontinuity at the glass transition temperature. Complementary pump-probe experiments associate the observed motion with density fluctuations. The key features of the dynamics are reproduced with a simple corrugated well potential energy surface model. In addition, the temperature dependence of the homogeneous vibrational dephasing was found to have a T2 functional form, where T is the absolute temperature.